• 2024-11-21

Języki, aby zostać mistrzem nauki danych

Jak zostać mistrzem w życiu? Jak uczyć się od innych?

Jak zostać mistrzem w życiu? Jak uczyć się od innych?

Spisu treści:

Anonim

Wszyscy chcą, aby ich kariera była bardzo pożądana - ponieważ popyt przekłada się na wielkie wynagrodzenie i brak pracy. W dzisiejszych czasach duża przestrzeń danych jest przepełniona tego rodzaju zatrudnieniem, ponieważ firmy różnej wielkości muszą gromadzić i analizować informacje w celu podejmowania decyzji i przewidywania (i uzyskiwania wyników).

Dokładnie to robią naukowcy zajmujący się danymi: odkrywają informacje, nawiązują połączenia, tworzą wizualizacje danych i pomagają firmom działać efektywnie. Dokładne zrozumienie właściwych języków programowania jest niezbędne do interpretowania statystyk i pracy z bazami danych.

Według KDnuggets 91% naukowców używa danych następujących czterech języków.

Język 1: R

R jest językiem zorientowanym na statystyki, popularnym wśród górników danych. Jest to open-source'owa, obiektowa implementacja S i nie jest zbyt trudna do nauczenia.

Jeśli chcesz dowiedzieć się, jak tworzyć oprogramowanie statystyczne, R jest dobrym językiem do poznania. Umożliwia także manipulowanie i graficzne wyświetlanie danych.

W ramach programu specjalizacji Data Science, Coursera oferuje klasę R, która nie tylko uczy, jak programować w języku, ale także opisuje, jak ją zastosować w kontekście nauki / analizy danych.

Język 2: SAS

Podobnie jak R, SAS jest używany głównie do analizy statystycznej. Jest to potężne narzędzie do przekształcania danych z baz danych i arkuszy kalkulacyjnych w czytelne formaty (takie jak dokumenty HTML i PDF), a także bardziej wizualne tabele i wykresy.

Pierwotnie opracowany przez naukowców akademickich, stał się jednym z najpopularniejszych narzędzi analitycznych na świecie dla firm i organizacji wszelkiego rodzaju. Jest to bardziej typ oprogramowania dużej korporacji i zazwyczaj nie jest używany przez mniejsze firmy lub osoby pracujące samodzielnie.

Materiały do ​​nauki SAS są wymienione w tym dokumencie. Język nie jest open-source, więc prawdopodobnie nie będziesz w stanie uczyć się za darmo.

Język 3: Python

Chociaż R i SAS są najczęściej uważane za „duże dwa” w świecie analityki, Python również niedawno stał się rywalem. Jednym z jego głównych atutów jest szeroka gama bibliotek (np. Pandas, NumPy, SciPi itp.) Oraz funkcje statystyczne.

Ponieważ Python (jak R) jest językiem open-source, aktualizacje są dodawane do niego szybko. (W przypadku zakupionych programów, takich jak SAS, musisz poczekać na kolejną wersję.)

Innym czynnikiem, który należy rozważyć, jest to, że Python jest prawdopodobnie najłatwiejszy do nauczenia się, ze względu na jego prostotę i szeroką dostępność kursów i zasobów na nim. Witryna LearnPython jest doskonałym miejscem do rozpoczęcia.

Możesz również znaleźć pełniejszą listę materiałów do nauki Pythona.

Język 4: SQL

Do tej pory szukaliśmy języków należących do tej samej rodziny i (mniej więcej) mają te same funkcje. Zmienia się SQL, co oznacza „Structured Query Language”. Ten język nie ma nic wspólnego ze statystykami; koncentruje się na obsłudze informacji w relacyjnych bazach danych.

Jest to najczęściej używany język baz danych i jest open source, więc aspirujący naukowcy danych zdecydowanie nie powinni go pominąć.

Nauka SQL powinna wyposażyć Cię w tworzenie baz danych SQL, zarządzanie danymi w nich i korzystanie z odpowiednich funkcji. Udemy oferuje szkolenie, które obejmuje wszystkie podstawy i można je ukończyć dość szybko i bezboleśnie.

Wniosek

Jako minimum powinieneś prawdopodobnie nauczyć się SQL i wybrać przynajmniej jeden z języków statystyk. Ale jeśli masz czas (w przypadku SAS, pieniądze) i chcesz naprawdę sprostać swojej rynkowości, nie ma nic do powiedzenia, że ​​nie możesz nauczyć się wszystkich czterech!

Nie spiesz się, zdobywaj dużo praktyki, doskonal swoje umiejętności - i ciesz się bezpieczeństwem pracy.


Interesujące artykuły

Słownictwo fikcyjne: Słownictwo

Słownictwo fikcyjne: Słownictwo

Postacie zapasowe czerpią z powszechnie znanych typów kulturowych ze względu na ich cechy i maniery i często są używane w parodii.

Musisz przestać być nieszczęśliwy w pracy

Musisz przestać być nieszczęśliwy w pracy

Jeśli jesteś niezadowolony z pracy, masz okazję przejąć kontrolę nad swoimi poglądami i kontrolować czynniki, które sprawiają, że jesteś nieszczęśliwy. Oto jak.

Stock Trader - Opis stanowiska

Stock Trader - Opis stanowiska

Dowiedz się więcej o byciu handlowcem giełdowym. Oto informacje o karierze, w tym zarobki, wymagania i perspektywy. Dowiedz się o powiązanych zawodach.

Jak powstrzymać działające mamy walczyć między pracą a życiem

Jak powstrzymać działające mamy walczyć między pracą a życiem

Znajomość osobistych wartości może zaoszczędzić czas, energię i ułatwić nie mówienie nikomu i tak, co jest dla ciebie ważne.

Opisy wszystkich zadań armii

Opisy wszystkich zadań armii

Oto lista Wojskowych Specjalizacji Wojskowych (MOS) lub miejsc pracy dostępnych dla żołnierzy oraz opis obowiązków każdego z nich.

Navy Enlisted Classification (NEC) Codes - Supply Community

Navy Enlisted Classification (NEC) Codes - Supply Community

System klasyfikacji Navy Enlisted Classification (NEC) uzupełnia zapisaną strukturę ratingową w identyfikacji personelu.